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Pushing the “Envelope”
 We saw, for a FODO 

system, that the motion of a 
single particle is contained 
within an “envelope”



 Wish to determine its 
functional form, and the rate 
at which the phase of the 
oscillatory motion develops



 Decouple motion of 
individual particle from 
intrinsic properties of the 
accelerator design

Envelope described by an 
“amplitude function”



  

Hill’s Equation --
Analytical Solution

 We saw that the equation of transverse motion is Hill’s 
Equation:



 Note:  “similar” to simple harmonic oscillator equation, 
but “spring constant” is not constant -- depends upon 
longitudinal position, s.

 So, assume solution is sinusoidal, with a phase which 
advances as a function of location s; also assume 
amplitude is modulated by a function which also 
depends upon s: 

 Plug into Hill’s Equation...
x(s) = A

√
β(s) sin[ψ(s) + δ]

x
′′ + K(s)x = 0



  

Analytical Solution (cont’d)
x(s) = A

√
β(s) sin[ψ(s) + δ]

x′ =
1

2
Aβ−

1

2 β′ sin[ψ(s) + δ] + A
√

β cos[ψ(s) + δ]ψ′

x′′ = . . .

Plug into Hill’s Equation, and collect terms... 

    and    are constants of integration, defined by the initial
conditions              of the particle.  For arbitrary        , 
must have contents of each [   ] = 0 simultaneously.

A δ
A, δ(x0, x

′

0)

x′′ + K(s)x = A
√

β

[
ψ′′ +

β′

β
ψ′

]
cos[ψ(s) + δ]

+A
√

β

[
−

1

4

(β′)2

β2
+

1

2

β′′

β
− (ψ′)2 + K

]
sin[ψ(s) + δ] = 0



  

Analytical Solution (cont’d)
 Thus, we must have ...

ψ′′ +
β′

β
ψ′ = 0

βψ′′ + β′ψ′ = 0

(βψ′)′ = 0

βψ′ = const

ψ′ = 1/β

−

1

4

(β′)2

β2
+

1

2

β′′

β
− (ψ′)2 + K = 0

2ββ′′
− (β′)2 − 4β2(ψ′)2 + 4Kβ2 = 0

2ββ′′
− (β′)2 + 4Kβ2 = 4

and

The function β(s) is the
local wavelength (λ/2π)
of the oscillatory motion.

Differential equation 
that the amplitude 
function must obeyNote:  the phase advance is an

observable quantity.  So, while could 
choose different value of const,  then    
     would just be scale accordingly; 
so, we can choose const = 1.
β



  

Some Comments
 We chose the amplitude function to be a positive definite function in its 

definition, since we want to describe real solutions.
 The square root of the amplitude function determines the shape of the 

envelope of a particle’s motion.  But it also is a local wavelength of the 
motion. 

 This seems strange at first, but ...
 Imagine a particle oscillating within our focusing lens system; if the 

lenses are suddenly spaced further apart, the particle’s motion will 
grow larger between lenses, and additionally it will travel further before 
a complete oscillation takes place.  If the lenses are spaced closer 
together, the oscillation will not be allowed to grow as large, and more 
oscillations will occur per unit distance travelled.

 Thus, the spacing and/or strengths (i.e., K(s)) determine both the rate 
of change of the oscillation phase as well as the maximum oscillation 
amplitude.  These attributes must be tied together.



  

The Amplitude Function, 

 Since the amplitude function is a wavelength, it will have numerical values 
of many meters, say.  However, typical particle transverse motion is on the 
scale of mm.  So, this means that the constant A must have units of m1/2, 
and it must be numerically small.  More on this subject next time...

β

Higher    -- 
smaller phase advance
larger beam size

Lower    -- 
greater phase advance
smaller beam size

β

β
F F FF D D D D



  

Equation of Motion 
of Amplitude Function

From
2ββ′′

− (β′)2 + 4Kβ2 = 4

we get
2β′β′′ + 2ββ′′′

− 2β′β′′ + 4K ′β2 + 8Kββ′ = 0

β′′′ + 4Kβ′ + 2K ′β = 0.

Typically, K ′(s) = 0, and so

(β′′ + 4Kβ)′ = 0

or
β′′ + 4Kβ = const.

is the general equation of motion for the amplitude function, β.
(in regions where K is either zero or constant)



  

Piecewise Solutions
 K = 0:

 since            ,  then from original diff. eq.:
 Therefore, parabola is always concave up

 K > 0, K < 0:

β′′ = const −→ β(s) = β0 + β′

0s +
1

2
β′′

0 s2

2ββ′′
− (β′)2 = 4β > 0

β′′ > 0

β(s) ∼ sin / cos or sinh / cosh + const

Parabola!



  

Courant-Snyder Parameters, &
Connection to Matrix Approach
 Suppose, for the moment, that we know the value of the 

amplitude function and its slope at two points along our 
particle transport system.

 Have seen how to write the motion of a single particle in 
one degree of freedom between two points in terms of a 
matrix.  We can now recast the elements of this matrix 
in terms of the local values of the amplitude function.  

 Define two new variables,


 Collectively,                 are called the Courant-Snyder 
Parameters (sometimes called “Twiss” or “lattice” parameters)

α ≡ −

1

2
β′, γ ≡

1 + α2

β

β, α, γ



  

The Transport Matrix
 We can write:
 Solve for a and b in terms of initial 

conditions and write in matrix form
 we get:
  

x(s) = a
√

β sinψ + b
√

β cos ψ

(
x
x′

)
=




(
β
β0

)1/2

(cos ∆ψ + α0 sin ∆ψ)
√

β0β sin ∆ψ

− 1+α0α√
β0β

sin ∆ψ − α−α0√
β0β

cos∆ψ
(

β0

β

)1/2

(cos ∆ψ − α sin∆ψ)




(
x0

x′

0

)



  

Periodic Solutions
 Within a system made up of periodic sections it is natural 

to want the beam envelope to have the same periodicity.
 Taking the previous matrix to be that of a periodic section, 

and demanding the C-S parameters be periodic yields...

Mperiodic =

(
cos ∆ψ + α sin ∆ψ β sin ∆ψ

−γ sin ∆ψ cos ∆ψ − α sin ∆ψ

)

Mperiodic

values of β, α above correspond to one
  particular point in the accelerator



  

Periodicity and the “Tune”
 We see from above that matrix of a 

periodic section (which, for example, 
could be an entire synchrotron!) has a 
Trace which is

 If the matrix does represent an entire 
synchrotron, then the total phase 
advance is just 2π x the tune:

trace(Mperiodic) = 2 cos ∆ψ

∆ψ = 2πν =

∮
ds

β(s)



  

Propagation of 
Courant-Snyder Parameters
 We note that can write periodic matrix 

corresponding to location s as:







 where detJ = 1, trace(J) = 0; J2 = −I

M0 =

(
cos ∆ψ + α sin ∆ψ β sin ∆ψ

−γ sin ∆ψ cos∆ψ − α sin ∆ψ

)

=

(
1 0

0 1

)
cos ∆ψ +

(
α β
−γ −α

)
sin ∆ψ

= I cos∆ψ + J sin ∆ψ = eJ∆ψ

J =

(
α β
−γ −α

)



  

Tracking β, α, γ ...
 Let M1 and M2 be the “periodic” matrices at two points, 

and M  propagates the motion between them.  Then,








 Or, equivalently,
 So, if know parameters (i.e., J ) at one point, can find 

them at another point if given the matrix for motion in 
between

M2 = M M1 M
−1

J2 = M J1 M
−1

M1

M2
M

(M1, M2 are “once around”)



  

Evolution of the Phase Advance
 Again, if know parameters at one point, 

and the matrix from there to another 
point, then

 So, from knowledge of matrices, can 
“transport” phase and C-S parameters 
along a beam line

M1→2 =

(
a b
c d

)
=⇒

b

aβ1 − bα1

= tan∆ψ1→2



  

Simple Examples
 Propagation 

through a Drift

 Propagation 
through a Thin Lens

M =

(
1 L
0 1

)

=⇒ ∆ψ = tan−1

(
L

β1 − Lα1

)

β = β0 − 2α0L + γ0L
2

α = α0 − γ0L

γ = γ0

M =

(
1 0

−1/F 1

)

=⇒ ∆ψ = 0

β = β0

α = α0 + β0/F

γ = γ0 + 2α0/F + β0/F 2



  

Choice of Initial Conditions


 Have seen how  β can be propagated from one point to 
another.  Still, have the choice of initial conditions...

 If periodic system, like a “ring,” then natural to choose 
the periodic solution for  β, α 

 If beam line connects one ring to another ring, or a ring 
to a target, then we take the periodic solution of the 
upstream ring as the initial condition for the beam line

 Will discuss optical “mismatches” and their implications 
in future talks



  

Computation of 
Courant-Snyder Parameters

 As an example, consider a FODO system

 Thus, use above matrix to compute 
functions at exit of the F quad..

M =

(
1 0

−1/F 1

) (
1 L
0 1

) (
1 0

1/F 1

) (
1 L
0 1

)

=

(
1 L

−1/F 1 − L/F

) (
1 L

1/F 1 + L/F

)

=

(
1 + L/F 2L + L2/F
−L/F 2 1 − L/F − L2/F 2

)
F -F F

L L



  

FODO Cell
 From the matrix:

 If go from D quad to D quad, get
 at exit:

traceM = a + d = 2 − L2/F 2
= 2 cos µ sin

µ

2
=

L

2F

β =
b

sinµ
= 2F

√
1 + sinµ/2

1 − sinµ/2
α =

a − d

2 sinµ
=

√
1 + sinµ/2

1 − sinµ/2

β = 2F

√
1 − sinµ/2

1 + sinµ/2
, α =

√
1 − sinµ/2

1 + sinµ/2

M =

(
1 + L/F 2L + L2/F
−L/F 2 1 − L/F − L2/F 2

)
=

(
a b
c d

)
Here, µ is
phase advance
through one
periodic cell



  

 Tevatron Cell
sin(µ/2) = L/2F = 0.6 −→ µ ≈ 1.2(69◦)
βmax = 2(25 m)

√
1.6/0.4 = 100 m

βmin = 2(25 m)
√

0.4/1.6 = 25 m
ν ≈ 100 × 1.2/2π ∼ 20

Periodic FODO Cell Functions
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Computer Codes
 Complicated arrangements can be fed 

into now-standard computer codes for 
analysis
 TRANSPORT
 SYNCH
 MAD
 CHEF
    many more ...



  

An Example -- NuMI Beam Line
 Using 

CHEF
(Michelotti, Ostiguy)



  

NuMI Beam Line using CHEF


